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An improved constitutive statistical damage 

model of A multisize polypropylene-fiber-

reinforced concrete under compression

X. Yang,1 N. Liang,2,3* X. R. Liu,2,3 and Z. Zhong2,3
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To study the effect of  multisize polypropylene fibers on the compression characteristics of concrete cubes, ten 
sets of polypropylene fiber-reinforced concrete test pieces were designed and fabricated to obtain their stress–
strain curves and mechanical parameters at different ratios of coarse and fine fibers. Results for the cubes with 
multisize  fibers were better than for those with to single-size ones. Based on test results, an improved statistical 
damage constitutive model for such a material is proposed. 

1. Introduction

The addition of polypropylene fibers to concrete can significantly improve its mechanical characteristics, as many 
investigations have shown. Yin et al. [1] studied the postcracking properties of a polypropylene-fiber-reinforced concrete. 
Sukontasukkul et al. [2] examined the bending properties of a hybrid steel- and polypropylene-fiber geopolymer. Daneti 
et al. [3] studied the effect of polypropylene fibers on the shrinkage cracking properties of a light-weight-aggregate 
concrete. Li et al. [4] investigated the compression and shearing properties of a polypropylene-fiber-reinforced concrete 
and found that the addition of polypropylene fibers could considerably increase the toughness index and fracture energy 
of concrete. Koniki et al. [5] studied the effect of polypropylene-terylene hybrid fibers on the stress–strain curve of a 
high-strength concrete. Zhao et al. [6] examined the effect of polypropylene fibers on the durability of concrete. Results 
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showed that the resistance of concrete to cyclic freezing and thawing increased with amount of the polypropylene fibers 
added. Aly et al. [7] investigated the effects of polypropylene fibers on the shrinkage cracking of concrete. Bagherzadeh 
et al. [8] studied the role of polypropylene fibers in improving the mechanical properties of concrete. Mastali et al. [9] 
examined the hardening properties of a polypropylene-fiber-reinforced concrete. Caggiano et al. [10] investigated the 
evolution trend of postpeak cracking of a steel- and polypropylene-fiber-reinforced concrete experimentally.

In our work, two or more different types of fibers were added to concrete to achieve performance advantages 
that cannot be obtained in the case of single-size fibers. Four types of fine and two types of coarse polypropylene fibers 
were used. Cube compression test were conducted on concretes with different-size fibers, and a one-parameter constitu-
tive statistical damage model was used to analyze the effect of polypropylene fibers on the compression characteristics 
of concrete.

2. Constitutive Statistical Damage Model of Multisize Polypropylene-Fiber-Reinforced Concrete under Compression

2.1. Theoretical relations

In [11-12], it is shown that the Weibull distribution can be used to describe the internal damage of materials. Thus, 
the microunit strength of multisize polypropylene-fiber-reinforced concrete is assumed to obey the Weibull distribution. The 
distribution function of probability density is

	 P m p
m

p
m

( ) expε
ε

ε

ε

ε

εp =








 −

























−

0 0

1

0
,	 (1)

where e p  is the random distribution variable of microunit strength, and m  and e0  are Weibull distribution parameters.
The damage degree D can be expressed as: 
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The microunit strength based on the Drucker–Prage principle is
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where, ϕ  is the internal friction angle of material; I1  and J2  are the first and second invariants of stress tensor.
In [13], it is shown that, in the one-dimensional stress state,
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where e1  is the axial strain. 
Conjecturing that concrete obeys Hooke’s law, we obtain that, according to the equivalent strain assumption,

	 σ ε1 1 1= −E D( ) ,	 (6)

where s1  is the axial stress and E  is the elastic modulus.
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Equation (2) is inserted into Eq. (6) to obtain that
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From Eq. (7), it follows that
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Inserting Eqs. (5) and (8) into Eq. (2) gives that
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Inserting Eq. (9) into Eq. (6) results in the constitutive statistical damage relationship
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2.2. Physical significance and limitations on parameters of the one-parameter constitutive statistical damage model

Equation (10) has only one parameter, m . Figure 1 shows damage degree–strain curves D–e1 at different values of m
. As can be seen, a smaller value of m  leads to a sharper variation in the curve and to a greater value of D , and the 
critical damage degree corresponding to the peak strain point. The parameter m  reflects the brittleness degree of mate-
rial. The greater the of value m , the more brittle is the material, and the microunit distribution is more concentrated. 
Figure 2 shows stress–strain curves s1–e1  at different values of the parameter m . As can be seen, a smaller value of m  
leads to a higher postpeak strength and a more gentle slope of the postpeak stress–strain curve. A smaller value of the 
parameter m  also led to a higher critical damage degree D  in the prepeak stage and to a higher post-peak strength, which 
did not agree with some experimental results. The test pieces with a higher critical damage degree D  in the prepeak stage 
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Fig. 1. Damage degree–strain curves D–e1 at m  = 0.5 (1), 1.0 (2), and 2.0 (3).
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Fig. 2. Stress–strain curves s1–e1 at m  = 0.5 (1), 1.0 (2), and 2.0 (3).
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not necessarily had a higher postpeak strength. This means that the one-parameter constitutive statistical damage model 
is limited and has to be improved. 

2.3. Improved constitutive statistical damage model

Equation (10) was improved assuming that
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where a is an additional damage parameter, and the damage degree D is expressed as
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Figure 3 presents damage degree–strain curves D–e1 in the case of different values of the parameter a . As can be 
seen, a larger value of parameter leads to a sharper variation in the curve, with the critical damage degree D corresponding to 
the peak strain point. The parameter a  reflects the average macroscopic strength of the material. A smaller value of the pa-
rameter a  leads to a higher average macroscopic strength. Figure 4 presents stress–strain curves s1–e1  for different values of 
the parameter a . As can be seen, a smaller value of a  leads to a higher peak strength and peak strain of the material.

2.4. Fitting result of the improved constitutive statistical damage model

Table 1 lists the geometrical and mechanical characteristics of the olypropylene fiber used in tests. The cement 
was the common 42.5R cement produced by Chongqing Fuhuang Cement Co., Ltd. The coarse aggregate was gravel with 
a size of 5-10 mm.

The strength grade of the concrete used in the test was C30. According to the Standard for Test Methods for Fiber-
reinforced Concrete [14], the internal dimension of each test mold was 100 × 100 × 100 mm. Ten experimental groups 
were prepared. No fiber was added to group A0, only plain concrete was used. A1-A4 were test pieces single-doped with 
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Fig. 3. Damage degree–strain curves D–e1 given by the two-parameter model at a  = 0.5 (1), 1.0 (2), 
and 1.5 (3).
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Fig. 4. Stress–strain curves s1–e1 given by the two-parameter model at a = 0.5 (1), 1.0 (2), and 1.5 (3).
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fine fibers of different sizes. According to the instruction manual provided by the polypropylene fiber manufacturer, the 
doping amount of fibers was 0.9 kg/m3. A5-A6 were test pieces single-doped with coarse fibers of different sizes in amount 
of 6.0 kg/m3. A7-A9 were hybrid fine and coarse fiber-reinforced test pieces. To guarantee the comparability of experi-
ments, the total doping amount of coarse and fine fibers was 6.0 kg/m3. Only the mixing ratio of the coarse and fine fiber 
was changed. Table 2 shows the mix proportion of concrete [15].

Table 1. Characteristics of Polypropylene Fibers

Fiber 
number

Diameter, 
mm

Length, 
mm

Tensile 
strength, MPa

Elastic modu-
lus, GPa

Elongation 
at break, % Density, g/cm3 Recommended doping 

amount, kg/m3

FF1 0.026 12 641 4.5 40 0.91 0.9
FF2 0.026 19 641 4.5 40 0.91 0.9
FF3 0.046 19 500 4.2 30 0.91 0.9
FF4 0.1 19 322 4.9 15 0.91 0.9
CF1 0.5 28 713 7.5 10 0.95 6.0
CF2 0.8 50 706 7.4 10 0.95 6.0

Table 2. Constituents of Polypropylene-Fiber-Reinforced Concretes (kg/m3)

Test piece number Fiber type Cement Sand Gravel Water Doping amount of fiber Sand ratio, %

A0 − 406 548 1221 207 0 23
A1 FF1 406 548 1221 207 0.9 23
A2 FF2 406 548 1221 207 0.9 23
A3 FF3 406 548 1221 207 0.9 23
A4 FF4 406 548 1221 207 0.9 23
A5 CF1 406 548 1221 207 6.0 23
A6 CF2 406 548 1221 207 6.0 23
A7 CF2+FF1 406 548 1221 207 5.1+0.9 23
A8 CF2+FF4 406 548 1221 207 5.1+0.9 23
A9 CF2+FF1+FF4 406 548 1221 207 5.1+0.45+0.45 23

Table 3. Fitting Result of the Improved Constitutive Statistical Damage Model

Test piece number Elastic modulus, GPa Parameter a Parameter m Fitting correlation coefficient

A0 26.088 0.7091 1.9972 0.9842
A1 34.111 0.9307 1.3891 0.9851
A2 32.878 0.8793 1.2521 0.9904
A3 32.308 1.0559 1.3795 0.9896
A4 30.993 0.7247 1.7261 0.9843
A5 29.175 0.6602 0.8627 0.9749
A6 28.503 0.8878 0.9945 0.9934
A7 30.657 0.5956 0.9355 0.9722
A8 34.307 1.1730 1.1493 0.9926
A9 32.729 0.6439 1.4579 0.9962
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Figure 5 and Table 3 show fitting result of the improved constitutive statistical damage model. As can be seen, the 
A1-A9 concrete test pieces, with polypropylene fibers added, had a higher elastic modulus and lower value of m  than the 
plain concrete test piece A0. This indicates that the addition of polypropylene fibers increases concrete rigidity and decreases 
its brittleness. In other words, its postpeak strength increases. The values of a  of A1-A9 concrete test pieces exceeded that of 
A0 in the majority of cases. A smaller value of a  indicates a higher average macroscopic strength of concrete test piece. Table 
3 shows values of the elastic modulus and the parameters a  and m  for all test pieces. The fitting result of the improved con-
stitutive statistical damage was good, and all correlation coefficients were exceeded 0.97 (see Table 4).

3. Correlation Coefficient Between Parameters of Multisize Polypropylene-Fiber-Reinforced Concrete

To determine the level of correlation between various parameters x and y of the reinforced concretes considered, the 
correlation coefficient

	 R y x y
x y

( , ) cov( , )
var[ ]var[ ]

x = 	 (13)

was introduced, where cov(x, y) is the covariance of x and y. var[x] is the variance of x and var[y] is the variance of y. The 
results obtained are presented in Table 4.
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Fig. 5. Comparison of test data (○) and fitting results of the improved constitutive statistical damage 
model (––––) for test pieces A0 (a), A1 (b), A3 (c), A5 (d), and A9 (f).
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A strong positive correlation, with R = 0.851, is seen to exist between the parameter a  and the peak strain. But 
correlation coefficients between the parameter m  and the peak strength, peak strain, and parameter a  are small, with 
R = –0.017, 0.0069, and –0.0701, respectively. Changes in the parameter m  also affect the prepeak strength, prepeak 
strain, and the critical damage degree D, but only slightly.

Conclusions

An improved two-parameter ( m  and n  ) constitutive statistical damage model of multisize polypropylene-fiber-
reinforced concrete in compression has been introduced and investigated. The parameter m  reflects the brittleness and a  
characterizes the macroscopic strength of the composite material. They were found by fitting calculation results to experi-
mental data. From our investigation, the following conclusions were drawn. 

1. The elastic modulus and peak strength of concrete reinforced with coarse and fine fibers were higher than those 
of concrete with only coarse fibers.

2. The parameter a  and the peak strain had a positive correlation with a correlation coefficient of up to 0.851. 
Correlations between the parameter m  and the peak strength, peak strain, and parameter were weak, with correlation coef-
ficient smaller than 0.1. 
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