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Symplectic method-based analysis 

of axisymmetric dynamic thermal buckling 

of functionally graded circular plates

J. H. Zhang,1* X. Liu,1 and X. Zhao2
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The dynamic thermal buckling of circular thin plates made of a functionally graded material is investigated by 
the symplectic method. Based on the Hamilton principle, canonical equations are established in the symplectic 
space, and the problems of axisymmetric dynamic thermal buckling of the plates are simplified. The buckling 
loads and modes of the plates are translated into generalized eigenvalues and eigensolutions, which can be 
obtained from bifurcation conditions. The effects of gradient properties, parameters of geometric shape, and 
dynamic thermal loads on the critical temperature increments are considered. 

1. Introduction

Functionally graded materials (FGMs) are new composites which are often made of metals and ceramics. Their 
properties vary smoothly and continuously according to the gradually changing volume fractions of constituent materi-
als. The structures made of FGMs can successfully minimize the thermal stresses, therefore, they can be used in extreme 
thermal environments [1, 2].

The stability of FGM structures have been studied extensively, particularly the thermal buckling behavior of 
FGM beams, plates, and shells. However, most of previous studies only dealt with static problems [3-13]. For example, a 
shooting method-based analysis of buckling and postbuckling of FGM Timoshenko beams and imperfect FGM plates was 
performed by Li et al. [4, 5]. The thermal postbuckling of uniform slender FGM beams was investigated by Anandrao et al. 
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[6] using the Rayleigh–Ritz and finite-element methods. The nonlinear thermal buckling and postbuckling of FGM tubes 
and beams were examined by She et al. [7, 8], with transverse shear and temperature effects considered. In addition, studies 
on the thermal postbuckling of circular FGM plates were carried out by Ma and Wang [9, 10]. Considering temperature 
and size effects, the thermal-mechanical-electrical buckling characteristics of FGM microbeams were investigated by Jia 
et al. [11]. Based on the symplectic method, Sun et al. [12, 13] studied the static buckling behavior of compressed FGM 
cylindrical shells subjected to thermal loads.

However, studies into the dynamic thermal buckling of the FGM structures are fewer in number than those dealing 
with static buckling. Mirzavand et al. [14] investigated the dynamic postbuckling characteristics of piezoelectric FGM 
cylindrical shells under thermal loads on the basis of Budiansky stability criterion. Mirzavand et al. [15] studied the dy-
namic thermal postbuckling and buckling of FGM cylindrical shells on the basis of a third-order shell theory. Shariyat [16] 
analyzed the nonlinear dynamic buckling characteristics of suddenly heated FGM cylindrical shells. The dynamic buckling 
behavior of FGM plates under thermal, electric, and mechanical loads was also examined by Shariyat [17]. Bich et al. [18] 
examined the dynamic buckling of stiffened FGM cylindrical shells under different types of compressive loads. Using the 
Galerkin method and considering the damping effect, the nonlinear dynamic buckling of FGM stiff and soft cylindrical 
shells was studied by Gao et al. [19].

To the best of our knowledge, only few research results have been reported on the dynamic thermal stability of 
circular FGM plates. Therefore, in this study, the dynamic thermal buckling behavior of thin plates is examined. Based 
on the symplectic method in the Hamilton system [20, 21], the equations of structural stability problems are solved by 
means of variable separation and expansion in symplectic eigenfunctions. 

2. Mathematical Formulation of Problem

2.1. Fundamental problem

Circular FGM plates of thickness h  and radius R  are considered. They are in the initial steady-state heat bal-
ance and are subjected to a uniform dynamic thermal load on their bottom surfaces, while their upper surfaces exchange 
heat with surroundings. The initial displacements and their rates are zero at all points. The dynamic thermal load is as-
sumed in the form T h t T f t−( ) = ∆ ⋅ ( )2, , where DT  is its amplitude and the function f t( )  describes temperature 
variations. The dynamic thermal buckling of the plates will be investigated in cylindrical coordinates r z, ,θ( ) , where r  
and θ  are the radial and circumferential directions. The distance from the plate middle plane is measured along the z  
coordinate.

The plates are made from a ceramic and metal, whose volume fractions vary in the thickness direction according 
to specified functions. The upper surfaces are metallic and the bottom ones are ceramic. Based on the rule of mixtures, 
the material properties P z( )  of the structures (including Young’s modulus E , density ρ , the specific heat capacity C , 
the coefficient of thermal expansion α , and the coefficient of thermal conductivity K ) vary continuously from those of 
ceramic to those of metal across the thickness direction according to the same relations as in [22]. The volume fractions 
vary as power functions, which are also given in [22], where the power-law index k  represents the gradient properties of 
FGM. Usually, Poisson’s ratio ν  varies little, and it was considered constant, ν ν( )z =  [22]. To facilitate the analysis of 
heat conduction in the plates, all material properties were expanded into the Taylor series with respect to z  about mid-
planes of the plates:

	 E K C E K zn n n n
n

n, , , , , ,α ρ α ζ( )  =  
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where the coefficients in the right side of Eqs. (1) are specified as
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2.2. Fundamental equations

Strains of the FGM circular plates can be regarded as axisymmetric owing to the uniform dynamic thermal loads 
imposed on their bottom surfaces. According to the classical plate theory, the axisymmetric geometric equations of the 
FGM circular plates in a cylindrical coordinate system are given by [10]

	 ε ε κr r rz= +0 ,  ε ε κθ θ θ= +0 z ,	 (2a)
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where u(r,t) and w r t( , )  are displacements in the r  and z  directions; t  is time; ε r  and εθ  are the normal strains at an 
arbitrary point in the r  and θ  directions, respectively; ε r

0  and εθ
0  are the normal strains on plate midplanes; κr  and κθ  

are curvatures. The boundary of the plates is fixed, and the boundary conditions are w = 0  and ∂
∂

=
w
r

0  at r R= .

Assuming that the functionally graded materials are linearly thermoelastic, the constitutive equations are expressed 
as [5]
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where σ r  and σθ are the normal stresses in the r  and θ  directions, and T z t,( )  is the temperature increment relative to 
the reference temperature T0 = 300 K. Integrating σ r  and σθ  across the plate thickness, the membrane forces and bend-
ing moments are obtained as
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Inserting Eqs. (2) and Eqs. (3) into Eqs (4a), the membrane forces and moments are expressed as
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where NT  and MT  are the thermal membrane force and thermal moment. A D B, , and  are stiffness coefficients, which are 
defined as
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2.3. Canonical equations

For the FGM plates, only the energy U  of bending strains is considered owing to its dominance. This energy is 
expressed as

	 U Vr rV
= +( )∫
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The relevant density of strain energy is
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Inserting Eqs. (2) into the previous expression yields
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The Lagrange function of the plates is
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where I0  is the mass per unit area of the plates, I b z z
h

h
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The dimensionless boundary conditions are expressed as
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To introduce the problem into the Hamilton system, the differential expressions are defined as ∂
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According to the Hamilton principle, the canonical equations in the Hamilton system can be obtained by a varia-

tional process. In order to solve the canonical equations accurately and analytically, the variable M B W
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was introduced. Then, the dual canonical equations in the Hamilton system was deduced in the form
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where ΨΨ  and h  are the state vector and the Hamilton operator respectively, which are defined as

	 ΨΨ =








W
M

,   h =

∂
∂

∂
∂









∂
∂

∂
∂







 −

∂
∂

∂
∂

























1
2R X

X
X

X
B

X
X

X X
X

X
β




.	 (11)

In Eq. (11), β =
N R
B

T 2
, and thus the thermal membrane forces NT , which depend on temperature fields, are also 

considered. Therefore, solutions for the temperature fields have to be obtained before solving the canonical equations. Ac-
cording to the Fourier heat conduction theory, the heat conduction equation is written as 
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The initial and boundary conditions are 
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where hr is the heat exchange coefficient between the upper surfaces of the plates and the surrounding environment. Equa-
tions (12) and (13) were solved analytically using the Laplace transformation technique in combination with the power 
series method, which gave the transient temperature fields in the FGM circular plates under dynamic thermal loads. The 
solution process is the same as in [1], where the transient temperature fields of FGM cylindrical shells were determined.

3. Solutions of Canonical Equations

The analytical solution of Eqs. (10) and (12)is
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where J0 ( )b X  is the primal Bessel function; C1  and C2  are coefficients. Inserting W  into boundary conditions (9) 
gives
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The solution of Eq. (15) has to be nonzero at the dynamic buckling of plates. Therefore, the determinant of the coef-
ficient matrix of Eq. (15) has to be equal to zero, namely,
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Expanding Eq. (16), the bifurcation condition is obtain as 

	 J1 0( )β = .	 (17)

In combination with β =
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T 2
, the thermal membrane buckling forces are calculated by solving Eq. (17). Based 

on the expression N E z z T z t zT
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ν
α , d , the relevant buckling temperature increments DTm  are obtained.

In order to determine buckling modes, we assume that C Cm2 = . In addition, solving Eq. (15), it is found that 
C Cm1 0= − ( )J β . Inserting C1  and C2  into Eq. (14), the buckling modal equation of the FGM circular plates is obtained in 
the form
	 W C Xm m m m= − ( ) + ( )



J J0 0β β .	 (18)

TABLE 1. Material Properties of Constituents

Material k, W/(m·K) ρ, kg/m3 E, GPa α, 1/K C, J/(kg·K)

SiC 65.0 3100 427 4.3·10–6 670
Ni 90.5 8890 206 13.3·10–6 439.5
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Fig.1. The first- (1), second- (2), third- (3), and fourth-order (4) buckling modes. 
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4. Numerical Results and Discussions

4.1. Buckling modes

In this Section, a numerical analysis and calculations are presented for FGM circular plates made of SiC and Ni. 
Table 1 lists the material properties of SiC and Ni. If not stated otherwise, the geometric dimensions of the plate are 

h = 1 cm, R = 30 cm, and λ = =
R
h

30 . Two kinds of thermal loads were considered separately in the calculation: an ex-

ponentially increasing thermal load and a one-step constant thermal load, i.e., f t e at( ) = − −1  and f t( ) =1 . If not specified 
otherwise, Dt =5 s, a =10 , and hr = 50 .

Bifurcation conditions Eq. (17) were solved by the Newton–Raphson method. The following dimensionless eigen-
values were obtained:

	 β1 14 59= . , β2 49 28= . , β3 103 43= . , β4 177 42= . , β5 271 26= . , β6 384 94= . , .	

Inserting bm  into Eq. (18), the buckling modes were found. The first- to fourth-order axisymmetric buckling modes 
of the plates are plotted in Fig. 1. As is seen, different eigenvalues correspond to different buckling modes. The order of buck-
ling mode increased with growing dimensionless eigenvalues. At the same time, the shapes of buckling modes did not depend 
on material properties.

TABLE 2. Comparison of Critical Buckling Temperature Increments DTcr

Source SiC k Ni0.5 1 2 5 10 100
[23] 548.11 337.95 289.28 258.23 235.19 219.52 188.38 183.48

Present 555.34 349.91 305.54 275.28 246.12 225.81 190.95 185.92
Difference, % 1.30 3.42 5.32 6.19 4.44 2.79 1.35 1.31

TABLE 3. Buckling Temperature Increments DTm of Plates under Exponential Thermal Loads

Material
Buckling mode

1 2 3
bm = 14.59 bm = 49.28 bm = 103.43

SiC 246.82 833.67 1749.73
k = 0.5 155.52 525.28 1102.47
k = 1 135.79 458.67 962.66
k = 2 122.34 413.24 867.32
k = 5 109.39 369.47 775.45
k = 10 100.36 338.97 711.45
k = 100 84.87 286.65 601.62

Ni 82.63 279.10 585.77
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4.2. Increments of dynamic buckling temperature 

In this Section, the dynamic buckling temperature increments are calculated and discussed, and the influence of ma-
terial gradient, parameters of structural geometry and thermal loading on the critical buckling temperatures are studied. First, 
the effectiveness and accuracy of dynamic buckling analysis by the symplectic method are verified using linear perturbation 
method. A comparisons of the critical buckling temperature DTcr  for the plates under exponential thermal loadings with the 
corresponding results obtain in [23] are shown in Table 2, where the parameters h = 1 cm and R  = 20 cm are the same as the 
relevant ones indicated in the literature. As is seen, the critical buckling temperature increments obtained by the symplectic 
method are very close to those found by the classical elasticity method.

Table 3 lists the first- to third-order buckling temperature increments DTm  for the plates subjected to the load of 
exponential type with different power-law indices k . It is seen that the buckling temperature increments differ greatly for the 
different orders of buckling modes, namely, the greater the buckling wave number, the higher the buckling thermal load is 
required. The critical buckling temperature increments, i.e., the minimum increments of buckling temperature are the eigen-
values corresponding to first-order buckling mode: m =1 . The instability of the FGM circular plates is axisymmetric, because 
the plates are subjected to uniformly distributed dynamic thermal loads.

0 20 40 60 80 100

800

700

600

500

400

300

200

100

0

� Tcr

1

2
3

4
5 k

Fig.2. Critical temperature increments DTcr  of plates under a one-step thermal load versus k  at 
λ  = 20 (1), 25 (2), 30 (3), 35 (4), and 40 (5).

TABLE 4. Critical Temperature Increments DTcr of Plates with Different λ

λ 20 25 30 35 40

SiC 555.34 355.42 246.82 181.34 138.84
k = 0.5 349.91 223.94 155.52 114.26 87.48
k = 1 305.54 195.54 135.79 99.77 76.38
k = 2 275.28 176.18 122.34 89.89 68.82
k = 5 246.12 157.52 109.39 80.37 61.53
k = 10 225.81 144.52 100.36 73.73 56.45
k = 100 190.95 122.21 84.87 62.35 47.74

Ni 185.92 118.99 82.63 60.71 46.48
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The effect of the power-law index k  and the ratio of radius to thickness λ = R h  on the critical buckling temperature 
increments of the plates under two kinds of dynamic thermal loads is shown in Table 4 and Fig. 2. Figure 2 illustrates relation-
ships between the critical buckling temperature increments and k  at different values of λ . As follows from Table 4 and Fig.2, 
the buckling temperature decreases if the power law index k  increases. This means that, with increasing k , the ability of the 
plates to withstand dynamic thermal actions decrease. At k < 2 , the decrease in buckling temperature increments is greater. 
However, the curves are leveling off when k > 2 . This is because the FGM plates become homogeneous ceramic at k = 0  
and metallic at k →¥ . The concentration of ceramic drops when k  increases, and Young’s modulus and the bending stiffness 
decrease. In addition, the bending stiffness of the plates decreases when λ  increases. Thus, the critical buckling temperature 
increments decreases significantly when λ  increases.

The critical buckling temperature increments of the plates subjected to the exponential thermal loads, for some spe-
cific values of hr , are listed in Table 5. As is seen, the critical buckling temperature increments do not depend on hr . This 
means that the heat transfer coefficients have a small effect on the dynamic thermal buckling of FGM circular plates.

The critical buckling temperature increments at different loading times Dt  are shown in Table 6 and Fig. 3. As is 
seen, the critical buckling temperature increments decrease with growing loading time. At Dt  < 5 s, the critical temperature 

TABLE 5. Critical Temperature Increments DTcr for Some Specific Values of hr

hr 10 30 50 70

SiC 246.34 246.58 246.82 247.06
k = 0.5 155.18 155.35 155.52 155.68
k = 1 135.52 135.66 135.79 135.93
k = 2 122.12 122.23 122.34 122.46
k = 5 109.20 109.29 109.39 109.48
k = 10 100.19 100.27 100.36 100.44
k = 100 84.72 84.79 84.87 84.94

Ni 82.49 82.56 82.63 82.70

TABLE 6. Critical Buckling Temperature Increments DTcr of Plates for Different Dt

Dt, с 1 2 5 10 ∞

SiC 407.06 297.78 246.82 242.43 242.33
k = 0.5 303.63 210.12 155.52 146.38 145.72
k = 1 270.32 186.24 135.79 126.79 126.01
k = 2 243.18 167.64 122.34 114.20 113.53
k = 5 213.11 147.80 109.39 101.76 102.39
k = 10 191.45 133.69 100.36 95.03 94.68
k = 100 156.82 111.01 84.87 80.95 80.72

Ni 152.72 108.09 82.63 78.82 78.60
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increments decreases drastically as the loading time is lengthened. But it hardly varies and tends to a constant with growing 
loading time if when Dt  > 5 s. This is because the longer the process, the more uniform are temperature distributions inside 
the plates, and the influence of the buckling critical temperature gradually disappears as the loading time is lengthened.

5. Conclusions

The dynamic thermal buckling of the FGM circular plates was studied using the symplectic method in the Hamilton 
system. Canonical equations were established and solved analytically in the symplectic space, and then the complete buckling 
modes in terms of Bessel functions were obtained. Relationships between the critical loads and buckling modes on the one hand 
and the symplectic eigenvalues and eigensolutions on the other hand are revealed. The study performed shows the symplectic 
method can efficiently be used to investigate the dynamic thermal buckling problem of FGM structures. The gradient proper-
ties of functionally graded materials have great effects on the critical buckling temperatures. The critical buckling temperature 
increments decrease with increasing gradient parameter and can be changed by adjusting the volume fractions of constituent 
materials. The ratio of plate radius to thickness and the time of the dynamic loading greatly affect the critical temperatures, 
but the effect of heat transfer coefficient is small.
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Fig. 3. Critical temperature increments DTcr  versus k for Dt  = 1 (1), 2 (2), 5 (3), 10 (4), and 
10,000 (5).
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