Title: Improved performance and stability of CsPbl₃ perovskites solar cells by dimensionality and precursor material regulating

Abstract: Inorganic CsPbl₃ perovskites have shown promising potential for achieving all-inorganic photovoltaic (PV) devices. However, the black perovskite polymorph (α -phase) of CsPbl₃ easily converts into yellow colour (δ -phase) in an ambient environment and it is only stable at high temperature (above 320 °C), which limits its practical application. In the report, we tailor the three-dimensional CsPbl₃ perovskite into guasi-two-dimension through adding a large radius cation phenylethylammonium (PEA⁺). The incorporation of PEA⁺ into the CsPbl₃ perovskite significantly improves the film morphology as well as the phase stability. An optimal Cs_xPEA_{1-x}Pbl₃ perovskite film remains stable in the black phase from room temperature to 250 °C in air. Furthermore, we systematic investigation of DMAPbl₃ ("mythical" hydrogen lead trihalide, i.e. HPbl₃, also known as Pbl₂·*x*HI) as the starting material, and achieve high-quality Cs_xDMA_{1-x}Pbl₃ perovskite films with uniform morphology, low density of trap states and good stability, leading to an optimized power conversion efficiency (PCE) up to 14.3%. Our findings offer new insights into producing high-quality Cs-based perovskite materials.