

Brief CV

Name	Li xuefeng	中文名	李学丰	
Gender	Male	Title (Pro./Dr.)	Pro. & Dr.	
Position (President)	N/A	Country	China	
University/ Department	Ningxia University Solid Mechanics Institute			
Personal Website	N/A			
Research Area	Geotechnical plastic mechanics, Geotechnical constitutive model Numerical calculation of geotechnical engineering			

Brief introduction of your research experience:

Initially, I focused on improvement of thermomechanical model for soil and its FEM analysis, which were completed under the guidance of my master's tutor. And then, I am devoted to constitutive modeling and strain localization analysis of anisotropic sands based on critical state theory, which is finished under the Ph. D Supervisor, Prof. Mao-song Huang who is at the School of civil engineering in Tongji university. After then, I focused on the multi-scale evolutionary mechanism of instability for natural sand and investigates both the uniform deformation before a persistent shear band and the localized deformation after it, and try to interpret the progressive failure of the multi-scale mechanism of natural sand with a hypoplastic constitutive model and to provide the scientific evidence for engineering applications. Now I focused on the aspects of particle shape, force chain contact, and failure laws, PFC3D simulates plane strain tests and true triaxial tests.

*****All the columns need to be filled in.